In this Topic Hide
Axxxx j k clk set reset out nout model_name |
Name | Description | Flow | Type |
---|---|---|---|
j | J input | in | d |
k | K input | in | d |
clk | Clock | in | d |
set | Asynchronous set | in | d |
reset | Asynchronous reset | in | d |
out | Data output | out | d |
nout | Inverted data output | out | d |
.MODEL model_name d_jkff parameters |
Name | Description | Type | Default | Limits |
---|---|---|---|---|
clk_delay | Delay from clk | real | 1nS | 1e-12 $- \infty$ |
set_delay | Delay from set | real | 1nS | 1e-12 $0 - \infty$ |
reset_delay | Delay from reset | real | 1nS | 1e-12 $0 - \infty$ |
ic | Output initial state | integer | 0 | $0 - 2$ |
rise_delay | Rise delay | real | 1nS | 1e-12 $0 - \infty$ |
fall_delay | Fall delay | real | 1nS | 1e-12 $0 - \infty$ |
jk_load | J,k load values (F) | real | 1pF | none |
clk_load | Clk load value (F) | real | 1pF | none |
set_load | Set load value (F) | real | 1pF | none |
reset_load | Reset load value (F) | real | 1pF | none |
family | Logic family | string | UNIV | none |
in_family | Input logic family | string | UNIV | none |
out_family | Output logic family | string | UNIV | none |
out_res | Digital output resistance | real | 100 | $0 - \infty$ |
out_res_pos | Digital output res. pos. slope | real | out_res | $0 - \infty$ |
out_res_neg | Digital output res. neg. slope | out_res | $0 - \infty$ | |
min_sink | Minimum sink current | real | -0.001 | none |
max_source | Maximum source current | real | 0.001 | none |
sink_current | Input sink current | real | 0 | none |
source_current | Input source current | real | 0 | none |
The following circuit and graph illustrate the operation of this device:
The following table describes the operation of the device when both inputs are at known states: The output can only change on a positive edge of the clock.
J input | K input | Output |
---|---|---|
0 | 0 | No change |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | toggle |
J input | K input | old output | new output |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | X | X |
0 | 1 | 0 | 0 |
0 | 1 | 1 | 0 |
0 | 1 | X | 0 |
0 | X | 0 | 0 |
0 | X | 1 | X |
0 | X | X | X |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 |
1 | 0 | X | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | X | X |
1 | X | 0 | 1 |
1 | X | 1 | X |
1 | X | X | X |
X | 0 | 0 | X |
X | 0 | 1 | 1 |
X | 0 | X | X |
X | 1 | 0 | X |
X | 1 | 1' | 0 |
X | 1 | X | X |
X | X | 0 | X |
X | X | 1 | X |
X | X | X | X |
|